Exam Seat No: _____

C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name:	Classical mechanics
Subject Code:	5SC04CLM1
Semester: 4	Date: 01/05/2018

Branch: M.Sc. (Mathematics) Time: 10:30 To 01:30

Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1	Answer the Following questions:	(07)
a.	Define: velocity of moving particle.	(01)
b.	What is cyclic coordinate .	(01)
c.	Define : Dirac delta function	(01)
d.	What is degree of freedom?	(01)
e.	Define: Angular momentum.	(01)
f.	Write the Lagrange's equation of motion.	(01)
g.	What do you mean by conservation?	(01)
Q-2	Attempt all questions	(14)
a.	What is constraint? Write any three types of constraints with proper examples.	(07)
b	State and prove conservation theorem of energy.	(07)
	OR	
Q-2	Attempt all questions	(14)
a.	State and prove principle of virtual work.	(04)
b.	State and prove Lagrange's equation of motion.	(10)
Q-3	Attempt all questions	(14)
	Write the generalized force for motion of single particle in space in	
a.	(1) Cartesian co-ordinate	(07)
	(2) plane polar coordinate	
b.	What is Atwood's machine? Prove that the Lagrange's equation of motion for	(07)
	Atwood's machine is $\ddot{x} = \frac{m_1 - m_2}{m_1 + m_2} g$.	

OR

Q-3 Attempt all questions

(14)

a.	Show that Lagrange's equation of motion is invariant under co-ordinate	
	transformation.	(07)
b.	Show that the Lagrange's equation of motion for simple pendulum is	(07)
	$\ddot{\theta} + \frac{g}{l} \theta = 0.$	

SECTION - II

.		
Q-4	Answer the Following questions:	(07)
a.	Define :Hamiltonian	(01)
b.	What is phase space?	(01)
c.	Define: Canonical transformation.	(01)
d.	What is generating function?	(01)
e.	Define: Routhian of motion.	(01)
f.	What is dual transformation?	(01)
g.	What is homogeneity of space?	(01)
Q-5	Attempt all questions	(14)
a.	State and prove Hamilton's principle a.	
b.	Show that distance of shortest curve between two points in a plane is a straight line.	(06)
c.	Compare Canonical transformation with Dual transformation with help of example.	(04)
	OR	
Q-5	Attempt all questions	(14)
a.	State and prove Hemilton's equation of motion.	(07)
b.	Find Hamiltonian and Hamilton's equation of motion for simple pendulum.	(07)
Q-6	Attempt all questions	(14)
a.	State and prove Routhian equation equation of motion	(07)

For the following find Lagrangian find the corresponding Hamiltonian and Hamilton's equation of motion. (07)

$$L = a\dot{x}^{2} + \frac{b\dot{y}}{x} + c\dot{x}\dot{y} + Fy^{2}\dot{x}\dot{z} + g\dot{y} - k\sqrt{x^{2} + y^{2}}.$$
OR

Q-6 Attempt all Questions

a.	Show that the transformation Q=log($1+\sqrt{q} \cos p$) and P=2($1+\sqrt{q} \cos p$) $\sqrt{q} \sin p$	(07)
	is canonical transformation and hence find generating function.	(-)

b. If
$$L = \frac{m}{2}(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{k}{r^n}$$
, Then obtain Routhian equation of motion. (07)

(14)